Eng

Μαθηματική Ανάλυση ΙΙ

Περιγραφή Μαθήματος:

Ο Ευκλείδειος χώρος Rn. Συναρτήσεις μεταξύ Ευκλείδειων χώρων, όριο και συνέχεια συναρτήσεων. Παράγωγοι διανυσματικών συναρτήσεων μιας μεταβλητής, εφαρμογές στη Μηχανική και στη Διαφορική Γεωμετρία, πολικές, κυλινδρικές και σφαιρικές συντεταγμένες. Διαφορίσιμες συναρτήσεις, μερική και κατευθυνόμενη παράγωγος, διαφορικό . Διανυσματικά πεδία, κλίση-απόκλιση-στροβιλισμός. Βασικά θεωρήματα διαφορίσιμων συναρτήσεων (θεωρήματα μέσης τιμής, Taylor). Θεώρημα της αντίστροφης συνάρτησης, θεωρήματα πεπλεγμένων συναρτήσεων, συναρτησιακή εξάρτηση. Τοπικά ακρότατα, ακρότατα υπό συνθήκες. Διπλά και τριπλά ολοκληρώματα: ορισμοί, κριτήρια ολοκληρωσιμότητας, ιδιότητες του διπλού-τριπλού ολοκληρώματος. Αλλαγή μεταβλητών, εφαρμογές. Επικαμπύλια ολοκληρώματα : επικαμπύλιο ολοκλήρωμα α' και β' είδους, επικαμπύλια ολοκληρώματα ανεξάρτητα του δρόμου, θεώρημα Green, απλά και πολλαπλά συνεκτικοί τόποι του R2 και R3. Στοιχεία από τη θεωρία των επιφανειών, επιφανειακά ολοκληρώματα α' και β' είδους. Βασικά θεωρήματα Διανυσματικής Ανάλυσης (Stokes και Gauss), εφαρμογές.