COURSE DESCRIPTION

1. GENERAL INFORMATION

SCHOOL	CIVIL ENGINEERING			
DEPARTMENT				
EDUCATION LEVEL	UNDERGRADUATE			
COURSE CODE	1141	SEMESTER 7		
COURSE TITLE	DYNAMICS OF STRUCTURES			
COURSE UNITS σε περίπτωση που οι διδακτικές απονέμονται σε διακριτά μέρη του μαθήματος π.χ. Διαλέξεις, Εργαστηριακές Ασκήσεις κ.λπ. Αν οι διδακτικές απονέμονται ενιαία για το σύνολο του μαθήματος αναγράψτετις εβδομαδιαίες hours διδασκαλίας και το σύνολο των διδακτικών μονάδων / ECTS		HOURS	ECTS CREDITS	
			4	5
Προσθέστε σειρές αν χρειαστεί. Η οργάνωση διδασκαλίας και οι διδακτικές μέθοδοι που χρησιμοποιούνται περιγράφονται αναλυτικά στο 4.				
COURSE TYPE: Mandatory for the Structural Engineering and Geotechnical Γενικού Υποβάθρου, Ειδικού Υπόβαθρου, Ειδικότητας Engineering routes				
PREREQUISITE KNOWLEDGE: Structural Analysis of Statically Determinate Structures, Struct Analysis of Statically Indeterminate Structures, Matrix Structur Analysis – 1d Finite Elements, Dynamics of the Rigid Body				Matrix Structural
COURSE AND EXAMS LANGUAGE:	Greek			
COURSE OFFERED TO ERASMUS STUDENTS:	Yes			
COURSE WEBSITE (URL):	https://helio	s.ntua.gr/cours	e/view.php?id=1588	3

2. LEARNING OBJECTIVES

Learning Objectives

Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος. Συμβουλευτείτε το Παράρτημα Α

- Περιγραφή του Επιπέδου των Μαθησιακών Αποτελεσμάτων για κάθε ένα κύκλο σπουδών σύμφωνα με Πλαίσιο Προσόντων του Ευρωπαϊκού Χώρου Ανώτατης Εκπαίδευσης
- Περιγραφικοί Δείκτες Επιπέδων 6, 7 & 8 του Ευρωπαϊκού Πλαισίου Προσόντων Διά Βίου Μάθησης και Παράρτημα Β
- Περιληπτικός Οδηγός συγγραφής Μαθησιακών Αποτελεσμάτων

In successfully completing the course, the students will be able to

- 1. **Understand** the fundamental properties that govern the response of dynamic systems.
- 2. Appreciate the influence of dynamic excitation on the response of dynamic systems
- 3. **Study** the dynamic response of single and multi degree of freedom systems
- 4. **Develop** the equations of motion that govern the dynamic response of structures
- 5. Solve the equations of motion with analytical and/or numerical methods
- 6. Critically assess the results of dynamic analysis procedures

General abilities

Λαμβάνοντας υπόψη τις γενικές ικανότητες που πρέπει να έχει αποκτήσει ο πτυχιούχος (όπως αυτές αναγράφονται στο Παράρτημα Διπλώματος και παρατίθενται ακολούθως) σε ποια / ποιες από αυτές αποσκοπεί το μάθημα;.

Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων

τεχνολογιών

Προσαρμογή σε νέες καταστάσεις Λήψη

αποφάσεων

Αυτόνομη εργασία Ομαδική

εργασία

Εργασία σε διεθνές περιβάλλον Εργασία σε διεπιστημονικό περιβάλλον Παράγωγή νέων ερευνητικών ιδεών Σχεδιασμός και διαχείριση έργων

Σεβασμός στη διαφορετικότητα και στην πολυπολιτισμικότητα Σεβασμός

στο φυσικό περιβάλλον

Επίδειξηκοινωνικής, επαγγελματικής και ηθικής υπευθυνότητας και

ευαισθησίας σε θέματα φύλου Άσκηση κριτικής και αυτοκριτικής

Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης

- Researching, analyzing and synthesing facts and data using pertinent technologies and methods
- Promoting free, creative and inductive thinking
- Individual working
- Developing critical thinking and reflective thinking

3. COURSE DESCRIPTION

- Introduction. Differences in static, dynamic behavior of structures. Dynamic loads. Dynamic equilibrium. Degrees of freedom of a structure. Dynamic model and equation of motion. Formulation of equation of motion of one-degree of freedom with the method of direct equilibrium and with the principle of virtual work.
- ii. Systems with one degree of freedom of motion. Free undamped and damped vibrations of single-degree-of-freedom systems. Forced vibrations of single-degree-of-freedom systems. Study of forced undamped and damped vibrations of single-degree-of-freedom systems subjected to harmonic and periodic forces. Resonance. Forced undamped and damped vibrations for any external load. Duhamel integral. Calculation of the Duhamel integral. Applications of the Duhamel integral. Response to step and harmonic loads. Study of forced vibrations of single-degree-of-freedom systems subject to ground motion. Response spectra. Influence of gravity on forced vibrations of single-degree-of-freedom system.
- iii. Numerical calculation of dynamic response. Central Difference Method. Acceleration Method (Newmark). Numerical calculation of the Duhamel integral. Demonstration of the dynamic behavior of a single-degree-of-freedom system on PC.
- iv. Generalized single-degree-of-freedom systems. Shape functions. Calculation of elastic, kinetic energy, virtual work of non-conservative forces.
- v. Systems with many degrees of freedom of motion. Elastic, inertial and damping forces of a structure. Formulation of stiffness matrix element with constant cross section. Formulation of stiffness matrix of a structure. Formulation of mass matrix of multi-degree-of-freedom systems with lumped and distributed mass. Geometric stiffness matrix structure. Formulation of stiffness matrix element with variable cross section. Static condensation of degrees-of-freedom.
- vi. Dynamic analysis of multi-story buildings. Eccentricity matrix. Transformation matrix. Stiffness matrix of a building. Mass matrix of a building.
- vii. Free vibration of multi-degree-of-freedom systems. Frequency equation of multi-degree-of-freedom systems. Eigenvalues, mode shapes, natural mode shapes of vibration of multi-degree-of-freedom systems. Orthogonality conditions of modes shapes. Properties of the eigenfrequencies and modes shapes of free undamped of multi-degree-of-freedom systems. Forced vibrations of undamped of multi-degree-of-freedom systems. Generalized mass, stiffness, external force of multi-degree-of-freedom systems. Damped of multi-degree-of-freedom systems. Uncoupled damped equations of motion. Evaluation of damping matrix of multi-degree-of-freedom systems. Dynamic response of damped multi-degree-of-freedom systems.
- viii. Participation of the modes shapes in the mode superposition method. Modal contribution. Modal contribution factor. Truncation error of higher modes. Base shear, Overturn moment of multi-degree-of-freedom building.

4. TEACHING METHODS - STUDENT ASSESSMENT

TEACHING METHODS:

- 1. Face to face contact
- Πρόσωπο με πρόσωπο, Εξ αποστάσεως εκπαίδευση κ.λπ.
- 2. Asyschronous teaching via material that is curated on the course website.

TEACHING MEDIA:

Χρήση Τ.Π.Ε. στη Διδασκαλία, στην Εργαστηριακή Εκπαίδευση, στην Επικοινωνία με τους φοιτητές The lecture material is handwritten in the lecture room on a tablet and projected on the monitor. The handwritten notes are then uploaded on the course webpage.

Programming sessions are also provided so that the students may develop their own algorithms.

The entire course material is provided on the course website. This includes

- 1. Lecture notes
- 2. Worked examples
- 3. Code snippets
- 4. Self-assessment guizzes
- 5. Passed exam questions.

All communication with the students is performed via the course website where any relevant announcements are also provided.

COURSE ARRANGEMENT: Περιγράφονται αναλυτικά ο τρόπος και μέθοδοι διδασκαλίας.	ACTIVITY	IMPORTANCE
Διαλέξεις, Σεμινάρια, Εργαστηριακή Άσκηση, Άσκηση Πεδίου, Μελέτη & ανάλυση βιβλιογραφίας, Φροντιστήριο, Πρακτική (Τοποθέτηση), Κλινική Άσκηση, Καλλιτεχνικό Εργαστήριο, Διαδραστική διδασκαλία, Εκπαιδευτικές επισκέψεις, Εκπόνηση μελέτης (project), Συγγραφή εργασίας / εργασιών, Καλλιτεχνική δημιουργία, κ.λπ. Αναγράφονται οι ώρες μελέτης του φοιτητή για κάθε μαθησιακή δραστηριότητα καθώς και οι ώρες μη καθοδηγούμενης μελέτης ώστε ο συνολικός φόρτος εργασίας σε επίπεδο εξαμήνου να αντιστοιχεί στα standards του ECTS	Lectures 13 weeks * 4 hours	52 hours
	Self-study 13 weeks * 3 hours	39 hours
	Projects 1 project * 30 hours	30 hoursς
	Programming sessions 2 sessions * 2 hours	4 hoursς
	OVERALL:	125

STUDENT ASSESSMENT:

Περιγραφή της διαδικασίας αξιολόγησης

Γλώσσα Αξιολόγησης, Μέθοδοι αξιολόγησης, Διαμορφωτική ή Συμπερασματική, Δοκιμασία Πολλαπλής Επιλογής, Ερωτήσεις Σύντομης Απάντησης, Ερωτήσεις Ανάπτυξης Δοκιμίων, Επίλυση Προβλημάτων, Γραπτή Εργασία, Έκθεση / Αναφορά, Προφορική Εξέταση, Δημόσια Παρουσίαση, Εργαστηριακή Εργασία, Κλινική Εξέταση Ασθενούς, Καλλιτεχνική Ερμηνεία, Άλλη / Αλλες

Αναφέρονται ρητά προσδιορισμένα κριτήρια αξιολόγησης και εάν και που είναι προσβάσιμα από τους φοιτητές.

Student assessment is performed on the basis of

- 1. A final written exam weighting 80% on the final grade
- 2. A term project weighting 20% on the final grade

The assessment criteria are described on the course webpage.

The final exam comprises problem solving questions and short answer questions with the objective of assessing the student critical skills.

5. **TEXTBOOKS – BIBLIOGRAPHY** - Suggested Bibliography:

Κατσικαδέλης Ι. Θ., Δυναμική Ανάλυση των Κατασκευών, Συμμετρία, 2020.

Chopra A. K., Δυναμική των Κατασκευών - Θεωρία και Εφαρμογές στη Σεισμική Μηχανική, εκδ. Γκιούρδας,

Κολιόπουλος Π. Κ. - Μανώλης Γ. Δ., Δυναμική των Κατασκευών με Εφαρμογές στην Αντισεισμική Μηχανική, εκδ. Γκιούρδας, 2005

-Relevant scientific journals:

Journal of Engineering Mechanics, ASCE

Journal of Structural Engineering, ASCE

Journal of Earthquake Engineering and Structural Dynamics, Wiley