COURSE DESCRIPTION

1. GENERAL INFORMATION

SCHOOL	CIVIL ENGINEERING			
DEPARTMENT				
EDUCATION LEVEL	UNDERGRADUATE			
COURSE CODE	1143 SEMESTER 7			
COURSE TITLE	ENGINEERING GEOLOGY			
COURSE UNITS σε περίπτωση που οι διδακτικές απονέμονται σε διακριτά μέρη του μαθήματος π.χ. Διαλέξεις, Εργαστηριακές Ασκήσεις κ.λπ. Αν οι διδακτικές απονέμονται ενιαία για το σύνολο του μαθήματος αναγράψτετις εβδομαδιαίες ώρες διδασκαλίας και το σύνολο των διδακτικών μονάδων / ECTS			HOURS	ECTS CREDITS
			3	4
Προσθέστε σειρές αν χρειαστεί. Η οργάνωση διδασκαλίας και οι διδακτικές μέθοδοι που χρησιμοποιούνται περιγράφονται αναλυτικά στο 4.				
COURSE TYPE: BY CHOICE MANDATOR			Υ	
PREREQUISITE KNOWLEDGE:	-			
COURSE AND EXAMS LANGUAGE:	GREEK			
COURSE OFFERED TO ERASMUS STUDENTS:	NO			
COURSE WEBSITE (URL):	https://helios.ntua.gr/course/view.php?id=1590			

2. LEARNING OBJECTIVES

Learning Objectives

Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος. Συμβουλευτείτε το Παράστημα Α

- Περιγραφή του Επιπέδου των Μαθησιακών Αποτελεσμάτων για κάθε ένα κύκλο σπουδών σύμφωνα με Πλαίσιο Προσόντων του Ευρωπαϊκού Χώρου Ανώτατης Εκπαίδευσης
- Περιγραφικοί Δείκτες Επιπέδων 6, 7 & 8 του Ευρωπαϊκού Πλαισίου Προσόντων Διά Βίου Μάθησης και Παράρτημα Β
- Περιληπτικός Οδηγός συγγραφής Μαθησιακών Αποτελεσμάτων

The subject of the course is the understanding of geological processes and phenomena and their impact on the stability of constructions. Evaluation of the technical-geological conditions together with the geological engineer of critical geological elements for the design of Civil Engineering projects.

Upon successful completion of the course, students will be able to:

- Evaluate the importance of the geological model in Civil Engineering projects.
- Gather necessary information about soil and its environment, process it appropriately, and "translate" it for the design and construction of Engineering Works.
- Understand the geological environment in which rock masses and soils are formed and characterize their quality.
- Analyze the engineering-geological characteristics that define the key factors for their stability in technical works.
- Understand the physical and mechanical properties of rocks as well as their mechanical behavior and comprehend the geological problems related to technical projects, especially the stability of slopes, the construction of dams, and the excavation of tunnels in rocky formations.
- Qualitatively assess the required support measures.

General abilities

Λαμβάνοντας υπόψη τις γενικές ικανότητες που πρέπει να έχει αποκτήσει ο πτυχιούχος (όπως αυτές αναγράφονται στο Παράρτημα Διπλώματος και παρατίθενται ακολούθως) σε ποια / ποιες από αυτές αποσκοπεί το μάθημα;.

Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών

Προσαρμογή σε νέες καταστάσεις Λήψη

αποφάσεων

Αυτόνομη εργασία Ομαδική

εργασία

εργασία σε διεθνές περιβάλλον Εργασία σε διεπιστημονικό περιβάλλον Παράγωγή νέων ερευνητικών ιδεών Σχεδιασμός και διαχείριση έρνων

Σεβασμός στη διαφορετικότητα και στην πολυπολιτισμικότητα Σεβασμός

στο φυσικό περιβάλλον

Επίδειξηκοινωνικής, επαγγελματικής και ηθικής υπευθυνότητας και

ευαισθησίας σε θέματα φύλου Άσκηση κριτικής και αυτοκριτικής

Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης

- Searching, analyzing, and synthesizing data and information using necessary technologies.
- Adaptation to new situations.
- Decision making.
- Autonomous work.
- Searching, analyzing, and synthesizing data and information using necessary technologies.
- Working in an interdisciplinary environment.
- Respect for the natural environment.

3. COURSE DESCRIPTION

Lecture Series - A: Geological model and engineering works. Rock - rock mass mechanical properties, geotechnical design parameters in Engineering Works:

- 1st lecture and exercise: The importance of the geological model in technical works. Consequences of ignorance or misinterpretation.
- 2nd lecture Exercise 2: Putting numbers in Geology I. Strength and Deformability of Intact Rock:
 Evaluation of strain (ε) normal stress (σn) diagrams for various rock types (elastic plastic behavior).
 Solving the Hoek-Brown failure criterion for intact rock and calculating cohesion and friction angle.
- 3rd lecture Exercise 3: Putting numbers in Geology II. Strength and Deformability of Rock Masses: Geotechnical classification GSI. Solving the Hoek-Brown failure criterion for rock masses (rock with discontinuities - fractured rock) and calculating cohesion and friction angle of the entire rock mass, when failure is not critically controlled by specific discontinuities.
- 4th lecture Exercise 4: Putting numbers in Geology III. Shear strength at rock discontinuities, specifically (when discontinuities exclusively or to a significant extent control the failure of the rock mass). Direct shear test. Estimation of friction angle from the Barton Bandis failure criterion.

Exercise Series B: Engineering Geology and Engineering Works

- 5th lecture Exercise 5: Artificial Slopes Excavations. Kinematic analysis of rocky slope stability. Assessment of conditions for possible occurrences of slides, planar, wedge, rotational slides, and overturning on rocky slopes. Use of stereographic projections Schmidt network.
- 6th lecture Exercise 6: Artificial Slopes Excavations. Analysis of rocky slope stability. Kinematic analysis. Calculation of safety factor from force analysis. Water effects. Slope reinforcements.
- 7th lecture Exercise 7: Dams. Selection of suitable location and choice of the most appropriate type of dam. Issues of waterproofing, foundation, and stability of slopes both at the basin level and at the dam site. The decisive role of Geology.
- 8th lecture Exercise 8: Dams. Waterproofing of dam site. Evaluation of in-situ permeability tests Lugeon. Design of a watertight curtain to address seepage, to prevent underground internal erosion (curtain of cement grouting, chemical injections, or continuous underground diaphragm wall).
- 9th lecture Exercise 9: Tunnels and Underground Works. Determination of technical-geological conditions along the tunnel and evaluation of their parameters and failure mechanisms.
- 10th lecture Exercise 10: Empirical design classifications of tunnels. RMR Classification Q Classification.
- 11th lecture Exercise 11: Evaluation of geo-research program elements: Compilation of a technicalgeological cross-section from the evaluation of data from borehole sections, and results of laboratory and in-situ tests for the selection of an appropriate TBM machine.

4. TEACHING METHODS - STUDENT ASSESSMENT

TEACHING METHODS:

Πρόσωπο με πρόσωπο, Εξαποστάσεως εκπαίδευση κ.λπ.

Lectures in the classroom. Solving simple examples and problems in the classroom. Discussion of case studies in the classroom.

TEACHING MEDIA:

Χρήση Τ.Π.Ε. στη Διδασκαλία, στην Εργαστηριακή Εκπαίδευση, στην Επικοινωνία με τους φοιτητές Presentations on the board, PowerPoint slides.

Course support and communication with students via the electronic platform https://helios.ntua.gr/

Creating videos on YouTube

	ACTIVITY
COURSE ARRANGEMENT:	
Περιγράφονται αναλυτικά ο τρόπος και μέθοδοι	
διδασκαλίας.	
Διαλέξεις, Σεμινάρια, Εργαστηριακή Άσκηση, Άσκηση	Lectures (hours)

Διαλέξεις, Σεμινάρια, Εργαστηριακή Ασκηση, Ασκηση Πεδίου, Μελέτη & ανάλυση βιβλιογραφίας, Φροντιστήριο, Πρακτική (Τοποθέτηση), Κλινική Ασκηση, Καλλιτεχνικό Εργαστήριο, Διαδραστική διδασκαλία, Εκπαιδευτικές επισκέψεις, Εκπόνηση μελέτης (project), Συγγραφή εργασίας / εργασιών, Καλλιτεχνική δημιουργία, κ.λπ.

Αναγράφονται οι ώρες μελέτης του φοιτητή για κάθε μαθησιακή δραστηριότητα καθώς και οι ώρες μη καθοδηγούμενης μελέτης ώστε ο συνολικός φόρτος εργασίας σε επίπεδο εξαμήνου να αντιστοιχεί στα standards του ECTS

Lectures (hours)	20
Tutorials - exercises focusing on the application of methodologies and problemsolving related to applications of Geology in Engineering Works (in smaller student groups).	30
Independent Study	30
Educational field trip (7 days) and outdoor exercises in technical works and failures (abroad).	40
OVERALL:	120

IMPORTANCE

STUDENT ASSESSMENT:

Περιγραφή της διαδικασίας αξιολόγησης

Γλώσσα Αξιολόγησης, Μέθοδοι αξιολόγησης, Διαμορφωτική ή Συμπερασματική, Δοκιμασία Πολλαπλής Επιλογής, Ερωτήσεις Σύντομης Απάντησης, Ερωτήσεις Ανάπτυξης Δοκιμίων, Επίλυση Προβλημάτων, Γραπτή Εργασία, Έκθεση / Αναφορά, Προφορική Εξέταση, Δημόσια Εργαστηριακή Εργασία, Παρουσίαση, Κλινική Εξέταση Ασθενούς, Καλλιτεχνική Ερμηνεία, Άλλη / Άλλες

Αναφέρονται ρητά προσδιορισμένα κριτήρια αξιολόγησης και εάν και που είναι προσβάσιμα από τους φοιτητές.

I. Written final examination (80%) which includes:

Questions covering almost the entire course material Solving 2 exercises of engineering works (tunnels, slopes, dams, foundations) under different geotechnical conditions II. Performance in tutorial exercises (20%) Students are informed in exercise sessions about their weekly performance as well as their performance in the final written examination, where they have the opportunity to review their written work and the grading of each question.

5. TEXTBOOKS - BIBLIOGRAPHY

-Προτεινόμενη Βιβλιογραφία:

-Συναφή επιστημονικά περιοδικά:

Course notes: "Engineering Geology" by P. Marinos, G. Tsiambaos, 2016 and additionally:

"Geology of Engineering Works" by G. Kouki & N. Sampatakakis or

" Engineering Geology" by G. Stournaras & M. Stavropoulou

Available on EUDOXUS

and

Chapters of Engineering Geology by P. Marinos

Recommended textbooks for the course:

- Goodman R.E. 1993. Engineering Geology: Rock in engineering construction. John Wiley & Sons
- Goodman R.E. 1989. Introduction to Rock Mechanics. John Wiley & Sons (2nd edition)
- Hoek E. & Bray J. 1981. Rock Slope Engineering, E& FN Spon
- Hoek E. 200. Practical Rock Engineering. (www.rocscience.com) (Ηλεκτρονικό βιβλίο με ελεύθερη πρόσβαση ανάκτηση και πολύ χρήσιμο)
- Bell F. 1993. Engineering Geology, Blackwell Science Ltd. (2nd Edition)
- Walters R.C. S. (1971) Dam Geology. Butterworths, London (2nd Edition)
- Attewell P.B. & Farmer I. W. 1979 Principles of Engineering Geology. John Wiley & Sons Inc. (2nd edition)